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Variable importance: what does it mean?

Variable importance is the quantification of the contribution of a feature (or
group of features) toward a learning task.

� Predicting an outcome

� Classifying an observation

� Determining a treatment rule
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Example 1: suicide prevention

Motivation: Clinical risk prediction models for suicide and self-harm use data
from EHR and insurance claims available at the time of a healthcare visit.
� Data reflecting recent events (prescriptions, diagnoses, self-harm events)

may not be available in real time.
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90-day 
outcome window

Date of visit

0-3 month predictors4-12 month predictors13-60 month predictorsBase predictors

Not related to specific time period Mental health characteristics
(temporal)

Weckstein et al. “Data lag in a large open and closed claims dataset: Navigating the completeness-timeliness tradeoff.”
Wolock et al. “Importance of variables from different time frames for predicting self-harm using health system data.”
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Example 2: SARS-CoV-2 correlates of immunity

Motivation: Identify binding and neutralizing antibodies that predict
protection against SARS-CoV-2 infection.

� Hypothesis generation for a formal correlates of immunity analysis

Follow-up time

Antibodies measured

Negative PCR test Positive PCR test Missed PCR test

Gilbert et al. “A Covid-19 Milestone Attained — A Correlate of Protection for Vaccines.”
Hoffman et al. “Correlates of Protection Against SARS-CoV-2 Infection in Children.”
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Example 3: HIV risk prediction

From 2016 to 2019, the HIV Vaccine Trials Network conducted a trial to
investigate the efficacy of a recombinant canarypox vaccine targeted at HIV-1
subtype C (prevalent in sub-Saharan Africa) in adults aged 18-35.

Secondary objective: learn about factors
that predict risk of HIV acquisition.

Risk models include:

Age Prevalent STIs
Sex Behavioral characteristics
BMI Partner characteristics

Housing Geography

What is the relative importance of these features?
� In particular, how much do we gain from relatively “expensive” predictors?

Gray et al. “Vaccine efficacy of ALVAC–HIV and bivalent subtype C gp120–MF59 in adults.”
Wolock, Gilbert, Simon, Carone. “Assessing variable importance in survival analysis using machine learning.”
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Types of variable importance

Variable importance

Algorithm-agnosticAlgorithmic

• Mean decrease in node impurity 
(random forests) (Breiman, 2001)

• Linear regression coefficient

• Permutation importance (Breiman, 
2001; Fisher et al., 2019)

• Exclusion importance or “leave-one-
covariate-out” (LOCO) (Lei et al., 
2018)
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Predictiveness

The ideal data unit is (X ,T ) ∼ P0, which lies in a nonparametric model M.

� T is the outcome of interest.

� X = (X1, . . . ,Xp) are the features, predictors, or covariates.

We use f to denote a generic prediction function.
� The performance of f under sampling from distribution P is quantified by

the predictiveness V (f ,P), e.g., minus mean squared error.X1

...
Xp

 f−→ f (X )
compare to T−−−−−−−−−−→ −{f (X )− T}2 summarize over P−−−−−−−−−−−−−→ −EP

[
{f (X )− T}2

]

In this case, V (f ,P) = −EP
[
{f (X )− T}2

]
.

Note: Throughout this talk, ‘blackboard’ font represents the ideal data world, regular
font the observed data world.

P
ideal data

←→ P
obs. data
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Focusing on survival analysis

In each of the settings we consider, the outcome of interest T is the time
between an initiating event and a terminating event.

T

randomization HIV acquisition

For now, we work on the scale of follow-up time, so the initiating event occurs at time

t = 0 for all individuals.

Some common predictiveness measures in the survival setting:

� AUC at time τ : V (f ,P0) = P0 {f (X1) > f (X2) |T1 ≤ τ,T2 > τ}
(Heagerty and Zheng, 2005)

� Brier score at time τ : V (f ,P0) = −EP0 [{f (X )− 1(T ≤ τ)}2]
(Brier, 1950)

� C-index: V (f ,P0) = P0 {f (X1) > f (X2) |T1 ≤ T2}
(Harrell, 1982)
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The key role of (informative) censoring

T

C

randomization HIV acquisition

loss to follow-uprandomization

We observe Y := min(T ,C ) and ∆ := 1(T ≤ C ).

Two types of censoring:

1 Study termination
(administrative)

2 Participant drop-out
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The current landscape

What methods exist for estimating variable importance under right censoring?

1 Algorithmic: Parametric/semiparametric models, e.g., coefficients from a
Cox model (Cox, 1972).
� Dependent on correct model specification
� Difficult to compare across features
� Not immediately clear how to handle interactions, groups of features,

correlated features, etc.
� Interpretation not necessarily linked to predictiveness

2 Algorithm-agnostic: Permutation (Breiman, 2001; Fisher et al., 2019).

fn

Train 
model Evaluate

Permute feature 
of interest

Evaluate

Compare

Performance on 
original data

Performance on 
permuted data
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Perils of permutation importance

� Lacking methods for estimation and inference under informative censoring.

� “Extrapolation bias”: For correlated features, this approach requires
generating predictions in regions with little (or even zero) probability mass
under the joint distribution of the features (Hooker et al., 2021; Wang et al.,

2024; Verdinelli and Wasserman, 2024).

x1

x2

Exclusion importance — comparing models trained using different subsets of
features — does not suffer this same issue.
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The oracle prediction function

Goal: assess the importance of Xs , where s ⊂ {1, . . . , p}, relative to the full
predictor vector X . In the exclusion paradigm, we consider two special
prediction functions:

f0 := argmaxf∈FV (f ,P0)

� The ‘full’ oracle, optimal in an

unrestricted class of prediction

functions

f0,s := argmaxf∈Fs
V (f ,P0)

� The ‘reduced’ oracle, optimal in the

class of prediction functions that

does not use Xs

F

Fs

We define the importance of Xs relative to X as V (f0,P0)−V (f0,s ,P0).

� Rather than this subtractive notion, we could also consider an additive approach
where Xs is added to a ‘base’ set of predictors.

� It may also be of interest to normalize by V (f0,P0); estimation and inference
can be handled using the delta method.
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Roadmap

The parameter V (f0,P0)−V (f0,s ,P0) is a sensible quantification of the
importance of Xs relative to X .

Taking this as our parameter of interest, we next focus on

1 identification;

2 estimation;

3 inference.
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Identification

Due to right censoring, the predictiveness measure V is not a functional of the
observed data distribution.

Many predictiveness measures have a common form that we can exploit:

V (f0,P0) = EP0 (ω [{f0(X1),T1} , . . . , {f0(Xm),Tm}])

=

∫
· · ·

∫
ω [{f0(x1), t1} , . . . , {f0(xm), tm}]

m∏
j=1

H0(dxj , dtj).

where ω is a known kernel function and H0 is the joint cdf of (X ,T ) under P0.

With a slight abuse of notation, we write V (f0,P0) as V (f0,H0).
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Identification

If T and C are independent within strata defined by X , then H0 is identified
by the observed data distribution.

� In contrast, many existing methods for evaluating predictiveness with
censored data make a stronger marginal independence assumption,
simplifying estimation.

Under conditionally independent censoring, the joint cdf H0 can be identified
pointwise — for some values of (x0, t0) — as

H0(x0, t0) =

∫
1(x ≤ x0)G0(t0 | x)Q0(dx) := H0(x0, t0) ,

with

� G0 the product-integral mapping applied to the conditional cumulative
hazard function of T given X under P0;

� Q0 the marginal cdf of X under P0.
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Plug-in estimation

The identified parameter V (f0,H0)− V (f0,s ,H0) depends on the nuisance
functions (f0, f0,s ,G0).

� We want to use flexible (machine learning) methods, e.g., random survival
forests (Ishwaran et al., 2008), survival Super Learner (Westling et al., 2024),
survival stacking (Wolock et el., 2024).

A first attempt:

1 Estimate the nuisance functions (f0, f0,s ,G0) using machine learning
estimators (fn, fn,s ,Gn).

2 Estimate Q0 using the empirical distribution Qn.

3 Set Hn := (Gn,Qn), and plug in estimated components:

V (fn,Hn)− V (fn,s ,Hn) .
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Plug-in estimation

The bias of the plug-in estimator tends to zero at a rate slower than n−
1
2 .
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This is due to the fact that Hn is not targeted to the parameter of interest.
Interestingly, the estimation of f0 and f0,s does not contribute to the excess
first-order bias (Williamson et al., 2023).
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Debiased estimation

How can we recover n−
1
2 asymptotics while using flexible nuisance estimators?

1 One-step estimator (Pfanzagl, 1982)

2 TMLE (van der Laan and Rubin, 2006)

Consider a parameter mapping P 7→ Ψ(P) that is pathwise differentiable (that
is, smooth) with gradient ϕ. For any estimator P̂n of P0, a first-order
expansion, similar to a functional Taylor expansion, gives

Ψ(P̂n)−Ψ(P0) = Pnϕ(P0)− Pnϕ(P̂n) + R(P̂n,P0) + (Pn − P0){ϕ(P̂n)− ϕ(P0)}

: Linear term, determines first-order behavior

: Bias term

: Second-order remainder term

: Empirical process term

Under some conditions, we can expect the one-step estimator Ψ(P̂n) + Pnϕ(P̂n)
to behave approximately like Pnϕ(P0).
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One-step estimator(s)

In general, there are multiple possible one-step estimators:

� ‘direct’ debias: using the gradient of P 7→ V (f0,HP)

� ‘indirect’ debias: construct targeted estimator H∗
n of H0 using the gradient

of P 7→ HP , then construct estimator V (fn,H
∗
n )

The gradient of P 7→ HP , evaluated at the point (x0, t0), is given by

(x , y , δ) 7→

1(x ≤ x0)

[
G0(t0 | x) + S0(t0 | x)

{
δ1[0,t](y)

S0(y | x)R0(y | x)
−
∫ t∧y

0

L0(du | x)
S0(u | x)R0(u | x)

}]

(G0,S0, L0): cdf, survival function, cumulative hazard of T given X .

(R0): survival function of C given X .

ψn,s : direct one-step ψ∗
n,s : indirect one-step
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The oracle prediction functions

We have thus far avoided the question of how to estimate the oracle prediction
functions f0 and f0,s .

� Derivation of the form of (f0, f0,s) must be handled on a case-by-case basis.

� For commonly used choices of V , doubly-robust estimation is possible —
consistent estimation of (f0, f0,s) is achieved by consistent estimation of
either G0 or R0.

AUC, Brier score, MSE for τ–restricted
survival time, . . .

� The oracle prediction function can
be written as EP0{h(T ) |X = x}
for a function h

� Use the doubly-robust
pseudo-outcome regression
approach of Rubin and van der
Laan (2007)

C-index

� Oracle prediction function not
available in closed form

� Estimation through direct
optimization of f 7→ V (f ,H∗

n ).
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Large-sample behavior

Result:

1 When all nuisances are estimated well, ψn,s and ψ∗
n,s have identical

first-order asymptotics.
� Letting ϕ0 denote the efficient influence curve of the variable importance

parameter, we have

ψn,s = ψ∗
n,s + oP(n

− 1
2 ) =

1

n

n∑
i=1

ϕ0(Xi ,Yi ,∆i ) + oP(n
− 1

2 ) .

� Therefore, n
1
2 (ψ∗

n,s − ψ0,s)⇝ N(0, σ2
0,s) with σ

2
0,s := varP0{ϕ0(X ,Y ,∆)}.

2 As long as either G0 or R0 is estimated consistently, ψ∗
n,s remains

consistent, while ψn,s may fail to be.

ψ∗
n,s

p→ ψ0,s ψn,s
p↛ ψ0,s

� Our proposed procedure enjoys doubly-robust consistency.
� Doubly-robust inference (confidence intervals and p-values) in this setting

remains an open question (Benkeser et al., 2017).

January 2025 Charlie Wolock (UPenn) 23/33



Cross-fitting

A standard regularity condition for asymptotic linearity is that (fn, fn,s ,Gn,Rn)
are not too complex. This is called a Donsker condition.

Cross-fitting can help us avoid this condition (Zheng and van der Laan, 2011;

Chernozhukov et al., 2018).

Estimate nuisances One-step construction

Fold 1 Fold 2 Fold 3

Fold 2 Fold 3

Fold 2 Fold 3

Fold 1

Fold 1
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Simulations: robustness

Scenario: conditional event distribution estimator misspecified

Empirical bias and variance near zero using
� indirect debiasing
� doubly-robust pseudo-outcome estimation of (f0, f0,s)
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Oracle estimator: Conditional surv. function Doubly−robust pseudo−outcome Debiasing: Direct Indirect

January 2025 Charlie Wolock (UPenn) 25/33



Simulations: n−
1
2–rate estimation and inference

Scenario: nuisances estimated using the global survival stacking ensemble
learner (Wolock et al., 2024)

The cross-fitted estimator has

� second-order bias,
� variance proportional to the nonparametric efficiency bound, and
� coverage near the nominal level.
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Variable importance in HVTN 702
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Full cohort

� Sex assigned at birth is
clearly an important
predictor.

� Qualitative results are
fairly stable across time
horizons for AUC.
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Variable importance in HVTN 702
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� Sexual behavior appears
most important, but
uncertainty is high.
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Variable importance and EHR data

Assessing variable importance can be more complicated when using EHR data.

Truncation-induced selection bias:
Patients enter the study after the
initiating event and before the
terminating event.

Example: Cancer patients who must undergo
genetic testing after diagnosis to enter the
study.

Truncation induces selection bias.

Limited outcome labeling:
Ascertainment of suicide death requires
linkage with state mortality records;
this information is missing for certain
health systems.

Internal health 
system data

State mortality data

Internal health 
system data

Morenz, Wolock, Carone. “Debiased machine learning for counterfactual
survival functionals based on left-truncated right-censored data.”
Wolock, Yan, Ning, Chen. “Transfer learning for model-free variable
importance.” (in progress)
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Opportunities: inference under the null

Recall: We compare the predictiveness of

� f0 ∈ F , an unrestricted class of prediction
functions;

� f0,s ∈ Fs , the class of prediction functions that
does not use Xs .

F
Fs

Suppose we wish to test the null hypothesis H0 : ψ0,s = 0.

H1 : ψ0,s > 0

f0

f0,s

H0 : ψ0,s = 0

f0

f0,s

V (fn,H
∗
n ) and V (fn,s ,H

∗
n )

have identical influence functions.

See Dai et al. (2022) and Hudson (2023) for work in this area.
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Opportunities: clustered data

CASCADIA study: How important are levels of neutralizing and binding
antibodies, measured at baseline, for predicting risk of SARS-CoV-2 infection?

Follow-up time

Antibodies measured

� Recruitment is by household

1 Data units correlated
2 Variable # of

individuals per
household

� Open questions:

1 How to debias?
2 How to make inference?
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Wrapping up

A nonparametric variable importance analysis can help provide insight into a
given prediction task and inform future data collection practices.

Our proposed framework

� is nonparametric and algorithm-agnostic;

� accommodates censoring informed by measured covariates;

� encompasses commonly used predictiveness measures;

� provides doubly-robust estimation and calibrated statistical inference while
allowing for flexible nuisance estimation.

Interesting and practically important work remains to be done, including

� improved procedures for inference under the null;

� efficient estimation and inference with correlated data.

See the survML package on CRAN for implementation of the methods
discussed today.
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Other work

Estimating symptom duration
following SARS-CoV-2 infection
using current status data

T

survey sent response symptom 
resolution

T

survey sent responsesymptom 
resolution

Status = 0

Status = 1

Estimating causal effects from
EHR data with underreported
exposure

Vaccination Infection

Trial 1

Trial 2

Trial 3

Wolock et al., “Investigating symptom duration using current status data: a case study of post-acute COVID-19 syndrome.”
Wolock et al., “Estimating causal effects from electronic health records data with underreported exposure.” (in progress)
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Conclusion

Thank you for listening!
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